Water Treatment Processes

Dr. Izharul Haq Farooqi Professor and Incharge Environmental Engineering Section Department of Civil Engineering Z.H.College of Engineering and Technology Aligath-Muslim University, Aligath

Water World

Two thirds of our planet is covered by water.

97.5% of the water is saltwater.

The majority of freshwater is beyond our reach, locked into polar snow and ice. Approximately 0.7% of water is available for daily use

Water Quality

- Water is in its purest form when it is in vapours.
- Water vapours needs a surface for condensation, impurities are imparted even at the moment of condensation.
- Water absorbs atmospheric gases as it falls in the form of rains
- Additional impurities are imparted as it flows through the water cycle

Safe drinking water

- Free from pathogenic organisms
- Clear
- Not saline
- Free from offensive taste or smell
- Free from compounds that may have adverse effect on human health
- Free from chemicals that cause corrosion of water supply systems

WATER QUALITY PARAMETERS

- Physical parameters
- Chemical
- Bacteriological

Physical Parameters

- Suspended Solids
- Turbidity
- Colour
- Odour
- Taste
- Temperature

Chemical Parameters

 pH, Alkalinity, hardness, dissolved solids, Cations, Anions, Toxic heavy metals, persistant organic pollutants, organic matter, etc.

Important Chemical Parameteres

- Fluoride: Causes Dental and Bone Fluorosis and is a major concern in India
- Arsenic: Poison, present in many parts of the country particularly in Eastern UP, West Bengal and in Ganga Basin
- Heavy Metals: sources industrial wastewater discharge (Metal plating industries). Most of them are Carcinogenic

Important Chemical Parameters

- Persistent Organic Pollutants
- Compounds that persist in environment for a longer duration of time and do not degrade naturally
- They can travel to long distances and can multiply in concentration through biological magnification through food chain.
- Most of them are Endocrine Disruptors and affects our harmonal system and decrease immunity.

Persistent Organic Polutants

- Persistant organic pollutants include
- Nine organochlorine based Pesticides
- Hexachlorobenzene
- Dioxines
- Furans
- (Dioxines and Furans are formed due to incomplete burning of solid waste)
- Toxic at very low concentration
- Such compounds are banned worldwide

Biological Parameters

- Disease causing bacteria and viruses
- It is impossible to test a water sample for millions of pathogens as it is expensive and time consuming.
- Test for Coliform bacteria is done as its presence and absence indicates the likely presence and absence of pathogens.
- Test is simple and can be performed on a routine basis

Water Treatment

Water Treatment

- Goal: clean water
- Source: (contaminated) surface water
- Solution: separate contaminants from water
- How?
- Methodologies differ from water quality and end use

Water Treatment

Unit processes* designed to

- Remove Suspended Impurities
- Remove Dissolved Chemicals
- Inactivate Pathogens

Conventional Surface Water Treatment

Screening

- Removes large solid:
 - logs
 - branches
 - rags
 - fish
- Simple process
 - may incorporate a mechanized trasm removal system

Protects pumps and pipes in WTP

Sedimentation

- the oldest form of water treatment
- uses gravity to separate particles from water
- often follows coagulation and flocculation

Conventional Sedimentation Basin

- long rectangular basins
- 4–6 hour retention time
- ▶ 3–4 m deep
- max of 12 m wide
- max of 48 m long

Coagulation

- Colloids are charged particles and do not settle by gravity
- Electrostatic repulsion
 - In most surface waters, colloidal surfaces are negatively charged
 - like charges repel
- van der Waals force
 - an attractive force
 - decays more rapidly with distance than the electrostatic force
 - is a stronger force at very close distances

Coagulation

- Coagulation is a physical-chemical process whereby particles are destabilized
- Several mechanisms
 - adsorption of cations onto negatively charged particles
 - decrease the thickness of the layer of counter ions
 - sweep coagulation
 - interparticle bridging

Coagulation Chemistry

- The standard coagulant for water supply is Alum [Al₂(SO₄)₃*18H₂O]
- Typically 5 mg/L to 50 mg/L alum is used
- The chemistry is complex with many possible species formed such as AIOH⁺², AI(OH)₂⁺, and AI₇(OH)₁₇⁺⁴
- The primary reaction produces $Al(OH)_3$ $Al_2(SO_4)_3 + 6H_2O \rightarrow 2Al(OH)_3 + 6H^+ + 3SO_4^{-2}$

Coagulation Chemistry

- Aluminum hydroxide [Al(OH)₃] forms amorphous, gelatinous flocs that are heavier than water
- The flocs look like snow in water
- These flocs entrap particles as the flocs settle (sweep coagulation)

Coagulant introduction with rapid mixing

- The coagulant must be mixed with the water
- Retention times in the mixing zone are typically between 1 and 10 seconds
- Types of rapid mix units
 - pumps
 - hydraulic jumps
 - flow-through basins with many baffles
 - In–line blenders
 - In-line static mixers

Flocculation

- It is a slow mixing process wherein colloids combine to form large flocs that settle by gravity
- > 20 to 30 minutes detention times is required for flocculation
- Generally Clariflocculators are used for the combined flocculation followed by sedimentation

Mechanical Flocculation

- Shear provided by turbulence created by <u>gentle</u> stirring
- Turbulence also keeps large flocs from settling so they can grow even larger!
- Retention time of 10 30 minutes
- Advantage is that amount of shear can be varied independent of flow rate
 Disadvantage is the tanks are far from plug flow

Coagulation/Flocculation

- Inject Coagulant in rapid mixer
- Water flows from rapid mix unit into flocculation reactor
- Water flows from flocculation reactor into sedimentation tank
 - make sure flocs don't break!
 - flocs settle and are removed

Filtration

- Slow sand filters
- Rapid Sand Filters
- Membrane filters
- Rapid sand filters (Conventional Treatment)

Slow Sand Filtration

- First filters to be used on a widespread basis
- Fine sand with an effective size of 0.2 mm
- Low flow rates (10 40 cm/hr)
- Schmutzdecke (Filter Cake) forms on top of the filter
 - causes high head loss cake
 must be removed periodically
- Used without coagulation/flocculation!

Filter Operation

b) Operation during cleaning

Particle Removal Mechanisms in Filters

Transport

Molecular diffusion

Inertia

Gravity

Interception

<u>Attachment</u>

Straining Surface forces

Membrane Filters

- More recent development and use in drinking water
- Microfilters:
 - nano- & ultra-filters: retention by molecular weight cutoff
 - Typically 1,000-100,000 MWCO
- Reverse osmosis filters: pore size small enough to remove dissolved salts; used to desalinate (desalt) water as well as particle removal
- High >99.99% removal of cellular microbes
- Virus removals high >9.99% in ultra-, nano- and RO filters
- Virus removals lower (& 99%) by microfilters
- Membrane and membrane seal integrity critical to effective performance

Adsorbers and Filter-Adsorbers

Adsorbers:

Granular activated carbon adsorption

- remove dissolved organics
- poor retention of pathogens, esp. viruses
- biologically active; develops a biofilm
- can shed microbes into water

Filter-adsorbers

- Sand plus granular activated carbon
 - reduces particles and organics
 - biologically active
 - microbial retention is possible

Disinfection

- Disinfection: operations aimed at killing or Inactivating pathogenic microorganisms
- Ideal disinfectant
 - Toxic to Pathogens
 - Non Toxic to humans
 - Fast Rate of Kill
 - Residual Protection
 - Economical

Disinfection Options

- Chlorine
 - chlorine gas
 - sodium hypochlorite (bleach)
- Ozone

Irradiation with Ultraviolet light

Chlorine

- First large-scale chlorination was in 1908 at the Boonton Reservoir of the Jersey City Water Works in the United States
- Widely used throughout the globe
- Typical dosage (1-5 mg/L)
 variable, based on the chlorine demand
 goal of 0.2 mg/L residual
- Trihalomethanes (EPA primary standard is 0.08 mg/L)

Chlorine Reactions

$\begin{array}{c} \mathsf{CI}_2 \,+\, \mathsf{H}_2\mathsf{O} \rightarrow \mathsf{H}^+ \,+\, \mathsf{HOCI} \,+\, \mathsf{CI}^- \\ \mathsf{HOCI} \leftrightarrow \mathsf{H}^+ \,+\, \mathsf{OCI}^- \end{array}$

- The sum of HOCI and OCI⁻ is called the Free Chloring Residual
- HOCI is the more effective disinfectant
- Therefore chlorine disinfection is more effective at low pH
- ► HOCI and OCI⁻ are in equilibrium at

Ozone

- Widely used in Europe
- O₃ is chemically unstable
- Must be produced on site
- More expensive than chlorine (2 3 times)
- Typical dosages range from 1 to 5 mg/L
- Often followed by chlorination so that the chlorine can provide a protective residual

residual

Thanks!