

Superconductivity

0

S. ARUMUGAM Centre for High Pressure Research Bharathidasan University, Tiruchirappalli-24

Temperature Dependence of Resistance

VOLTAGE DIFFERENCE

Electrical resistivity of three states of solid matter

• Graphite is a metal, diamond is an insulator and buckminster-fullerene is a superconductor.

They are all just carbon!

Introduction

Superconductivity- discovery

•Liquid Helium (4K) (1908). *Boiling point* 4.22K.

•Superconductivity in Hg T_c=4.2K (1911)

"Mercury has passed into a new state, which on account of its extraordinary electrical properties may be called the superconducting state"

H. Kamerlingh Onnes 1911 (Nobel prize 1913)

Resistivity R=0 below T_c ; (R<10⁻²³ $\Omega \cdot cm$, 10¹⁸ times smaller than for Cu)

Introduction..

What is Superconductivity??

 \checkmark Superconductivity is the ability of certain materials to conduct electrical current with no resistance.

 \checkmark Thus, superconductors can carry large amounts of current with little or no loss of energy.

W. Meissner (1933)

Heike Kamerlingh Onnes (Nobel Prize 1913)

" A superconductor is a material that exhibits both **perfect conductivity and perfect diamagnetism**".

Basic Characteristics of SC

Perfect diamagnetism

Zero Resistance

The Meissner (and Ochsenfeld) Effect

superconductors push out magnetic fields

this 'diamagnetic' property is more fundamental than zero resistance

Levitation with High-Tc Superconductors

A kg or so of fish bowl

協力:財団法人 日本相撲協会

Superconductivity phenomena

- Perfect conductivity $\sigma = \infty$
- Perfect diamagnetism B = 0
- Magnetic field suppresses superconductivity $H_c(T), H_{c1}(T), H_{c2}(T)$
- Magnetic flux is quantized in units of h/2e
- Dynamics of the lattice is important $~T_c \propto M^{\text{-}\alpha}$
- Energy gap 2Δ
- T_c and energy gap are related
- Superconductivity mechanism in HTS is different from LTS

Magnetism:Properties of Superconductors

Superconductors can be classified into two types according to their interaction with an external magnetic field:

Type I

- Type I superconductors expel all magnetic flux
- Superconductivity ends when a critical flux is applied. Examples include mercury, lead, and tin.

Callister, W.D. 2012, 776-779. Patel, M.J. et. al. Nat. Confer. Rec. Trend. Engr. Tech. 2011.

http://www.gitam.edu/eresource/Engg Phys/semester 2/supercon/type 1 2.htm

Figure 7.1: Type I superconductors are different than Type II superconductors. This figure shows the comparison of graphs Bc vs Tc in both types. Type II has a mixed state while Type I does not.

Type I - Meissner Effect

 Type I superconductors expel magnetic field. (Meissner Effect)

Type I Superconductors

Mat.	Т _с (К)		
Ве	0		
Rh	0		
W	0.015		
Ir	0.1		
Lu	0.1		
Hf	0.1		
Ru	0.5		
Os	0.7		
Мо	0.92		
Zr	0.546		
Cd	0.56		
U	0.2		
Ti	0.39		
Zn	0.85		
Ga	1.083		

Т _с (К)		
1.1		
1.2		
1.4		
1.4		
1.4		
2.39		
3.408		
3.722		
4.153		
4.47		
5.38		
6.00		
7.193		
7.77		
9.46		

Magnetization of superconductors

Magnetic field suppresses superconductivity

Type II Superconductors

Material	Transition Temp (K)	Critical Field (T)	
NbTi	10	15	
PbMoS	14.4	6.0	
V₃Ga	14.8	2.1	
NĐN	15.7	1.5	
V ₃ Si	16.9	2.35	
Nb ₃ Sn	18.0	24.5	
Nb ₃ A1	18.7	32.4	
Nb ₃ (AlGe	e) 20.7	44	
Nb ₃ Ge	23.2	38	

From Blatt, Modern Physics

Physics of type I and II superconductors

u "London Penetration Depth" l_L

is the e-fold decay length of the magnetic field from the superconductor skin due to the Meissner effect (in the range of 10 to 10^3 nm) **normal superconducting**

Ginzburg-Landau Parameter k

$$\kappa = \frac{\lambda_L}{\xi} \Rightarrow \begin{cases} k < \frac{1}{\sqrt{2}} \Leftrightarrow \text{ type I} \\ k > \frac{1}{\sqrt{2}} \Leftrightarrow \text{ type II} \end{cases}$$

material	In	Pb	Sn	Nb
$\lambda_L [\mathrm{nm}]$	24	32	pprox 30	32
ξ [nm]	360	510	≈ 170	39

ξ

There are two main theories in SC

First Theory

- After discovery of superconductivity, initially many phenomenological theories have been developed:
- ≻ London theory (1930s)
- Macroscopic quantum model of superconductivity
- Ginzburg-Landau-Abrikosov-Gorkov theory (early 1950s)
- Ginzburg-Landau Theory describes the properties of superconductors in magnetic fields

Second Theory

Microscopic BCS theory – describes why materials are superconducting

The BCS attractive mechanism

A theoretician would describe this attraction as due to exchange of

'virtual phonons'

- but we can visualise it as the "sagging mattress effect"! is due to electrons slightly deforming the crystal lattice

A sagging mattress draws two sleepers together.

Cooper Pair

- Two electrons that appear to "team up" in accordance with theory BCS or other despite the fact that they both have a negative charge and normally repel each other.
- Below the superconducting transition temperature, paired electrons form a condensate a macroscopically occupied single quantum state which flows without resistance
- Electrons Fermions
- Cooper pair Bosons

Classical model of superconductivity

1957 John Bardeen, Leon Cooper, and John Robert Schrieffer

An electron on the way through the lattice interacts with lattice sites (cations). The electron produces phonon.

The lattice deformation creates a region of relative positive charge which can attract another electron.

During one phonon oscillation an electron can cover a distance of $\sim 10^4$ Å. The second electron will be attracted without experiencing the repulsing electrostatic force.

Cooper Pair

Creation of a C-Pairs diminishes energy of electrons. Breaking a pair (e.g. through interaction with impurity site) means increase of the energy.

All the C-P are in the same quantum state with the same energy. A scattering by a lattice imperfection (impurity) can not change quantum state of all C-P at the same time (collektive behaviour).

A movement of the C-P when a supercurrent is flowing, is considered as a movement of a centre of the mass of two electrons creating C-P.

What destroys superconductivity?

A current: produces magnetic field which in turn destroys superconductivity.

High temperatures: strong thermal vibration of the lattice predominate over the electron-phonon coupling.

Magnetic field: the spins of the C-P will be directed parallel.

should be antiparallel in C-P)

Penetration depth

 λ depicts the distance where B(x) is e-time smaller than on the surface

SC type II in a magnetic field

 $B_i\!\!=\!\!B_a\!\!+\!\!\mu_0M$

Vortex-lattice in superconductor type II. Magnetic flux of a vortex is quantized: $\Phi_0 = h/2e \approx 2.07 \cdot 10^{-15} Tm^2$

A big class of new materials (> 2000 compounds)

Break through High Tc SC

In 1986 HTCS ($La_{1.85}Ba_{0.15}CuO_4$, $T_c=30K$) have been discovered. The higher critical temperature for HTCS is 138 K ($Hg_{0.8}Tl_{0.2}Ba_2Ca_2Cu_3O_{8.33}$)

High Temperature Superconductors (1986)

Received the Nobel Prize 1987 for discovery of the first of the copper-oxide superconductors

Paul Chu

Alex Müller and Georg Bednorz

gh-T_c Superconductivity

164 K

Development of Superconducting Materials

Superconductivity (1911 to 2015 (104 years))

The dream - "Tomorrow's Superconducting World"

Energy Saving: power lines electric motors transformers

Medical Diagnostics: Magnetic Resonance Imaging SQUID: Brain activity Heart function

Computing: 1000 times faster supercomputers Information Technology: much faster, wider band communications Underground rapid transit: Heathrow to Gatwick in 10 minutes

Applications- Transport

- Maglev trains (Paris to Rome in just over 2 hours!)
- Frictionless bearings increasing efficiency of electrical motors and generators in electric-powered transport
- Smaller, lighter gyros in spacecraft and satellites Maglev trains

Maglev- Magnetic levitation trains which float over a guideway replacing steel wheels and tracks.

Frictionless so can travel up to 500km/h (310mph) – viable option replacing aircraft for some journeys.

China- Shanghai transrapid shuttles 19 miles from Pudong airport to Longyang train station in 8 min flat at 430 km/h

Japan's maglev train

MAGNETIC LEVITATION TRAINS

- Commercial Track
- Length 30.5 km
- Top speed 501km/h
- Service speed 430km/h Shanghai,
- 6 million passengers so far China

ACKNOWLEDGEMENTS

DST UGC **CSIR** AICTE BRNS CSIR **TWAS INDO-FRENCH** Organizer

பாரத்தாசன் பலகலைக்கழகம் Thank you HUHULL 34